Skip to content

Use Cases

OxideShield™ protects LLM applications across industries. This section shows how to configure guards for specific scenarios.

Industry Solutions

Industry Primary Threats Recommended Guards
Financial Services PII leakage, fraud prompts PIIGuard, PatternGuard, ToxicityGuard
Healthcare PHI exposure, misinformation PIIGuard, ToxicityGuard, MLClassifierGuard
Customer Support Jailbreaks, brand damage PatternGuard, ToxicityGuard, LengthGuard
Developer Tools Code injection, extraction PatternGuard, EncodingGuard, SemanticGuard
Chat Bots & Personal AI Multi-platform attacks, privilege escalation PatternGuard, Proxy Gateway, Rate Limiting

By Threat Type

Protecting Sensitive Data

Problem: Customer data (emails, SSNs, credit cards) leaking into LLM responses or logs.

Solution: PIIGuard with appropriate redaction strategy.

from oxideshield import pii_guard

guard = pii_guard(redaction="hash")  # Audit-friendly hashing
result = guard.check(user_input)
if result.sanitized:
    safe_input = result.sanitized  # PII replaced with hashes

Preventing Jailbreaks

Problem: Users trick your AI into bypassing content policies.

Solution: Multi-layer defense with pattern + ML classification.

from oxideshield import pattern_guard, ml_classifier_guard

pattern = pattern_guard()  # Fast, catches known attacks
ml = ml_classifier_guard(threshold=0.7)  # Catches novel attacks

result = pattern.check(user_input)
if result.passed:
    result = ml.check(user_input)

Blocking Prompt Injection

Problem: Attackers override your system prompt to change AI behavior.

Solution: PatternGuard + SemanticSimilarityGuard for defense in depth.

from oxideshield import pattern_guard, semantic_similarity_guard

pattern = pattern_guard()
semantic = semantic_similarity_guard(threshold=0.85)

# Pattern catches exact matches, semantic catches paraphrases

Preventing Resource Exhaustion

Problem: Attackers send extremely long inputs to exhaust tokens/costs.

Solution: LengthGuard as first line of defense.

from oxideshield import length_guard

guard = length_guard(max_chars=10000, max_tokens=2000)
result = guard.check(user_input)
# Blocks inputs that would be too expensive to process

Deployment Patterns

API Gateway Protection

Protect all LLM API calls through a central proxy:

oxideshield proxy \
    --listen 0.0.0.0:8080 \
    --upstream openai=https://api.openai.com \
    --upstream anthropic=https://api.anthropic.com \
    --config guards.yaml

Library Integration

Embed guards directly in your application:

from oxideshield import multi_layer_defense

defense = multi_layer_defense(
    enable_length=True,
    enable_pii=True,
    enable_toxicity=True,
    strategy="fail_fast"
)

# Check before every LLM call
result = defense.check(user_input)
if result.passed:
    response = llm.generate(result.sanitized or user_input)

Browser-Side Validation

Pre-filter inputs before they leave the browser:

import init, { PatternGuard, PIIGuard } from '@oxideshield/wasm';

await init();
const guard = new PatternGuard();

// Check before sending to backend
const result = guard.check(userInput);
if (!result.passed) {
    showError("Please rephrase your question");
}

Compliance Mapping

OxideShield™ maps to major compliance frameworks:

Framework Relevant Guards Documentation
NIST AI RMF All guards NIST Mapping
EU AI Act PIIGuard, ToxicityGuard EU AI Act
HIPAA PIIGuard Healthcare Use Case
SOX PatternGuard, PIIGuard Financial Use Case
GDPR PIIGuard PIIGuard Documentation